Indeed it would seem that future improvements in obtaining light from electrical currents will rather be hy the use of a sullicient resistance in the most limited space practicable, thereby obtaining in such space the highest possible temperature.

Perhaps the highest estimate that can be given of the efliciency of Dyna-mo-Electric-Machines as ordinarily used, is not over 50 per cent. Our measurements have not given more than 38 per cent. Future improvements may increase this proportion. Since the efficiency of an ordinary steam engine and boiler in utilizing the lieat of the fuel is probably overestimated at 20 per cent., the apparent maximum percentage of heat that could be recovered from the current developed in a Dynamo-Electric-Machine, would he overestimated at 10 per cent. The economicul heating of buiklings by means of electricity may therefore be regarded as totally impracticable.

Attention has, long ago, been directed to the use of Dynamo-Electric Machines for the conveyance of power. Their employment for this purpose would incleed secm to be quite promising. Since in this case one machine is employed to produce electrical currents, to be reconverted into mechanical lorce by another machine, the question of economy rests in the perfection of the machines and in their relative resistances.

In respect to the relations that should exist hetween the external and intermal work of Dynamo-Electric Machines, it will be found that the greatest efliciency will, of course, exist where the external work is much greater than the internal work, and this will be proportionately greater as the external resistance is greater. Our measurements gave in one instance the relaton of .82 olm . of the are to .49 olm of the machine, a condition which indicates economy in working. The other extreme was found in an instance where the resistance of the are was 1.98 ohms., while that of the machine was 4.60 ohms. a condition indicating wastefulness of power.

Stated Meeting, Nov. 15, 1878.
Present, 23 members.

Vice-President, Mr. E. K. Price, in the Chair.

Letters of acknowledgment were received from Prof. Steenstrup, of Copenhagen, dated Oct. 15, 1878 (101); the R. Zoological Society, Amsterdam, Oct. 15, 1878 (101; Catalogue, part iii) ; Teyler Foundation, Leyden, Oct. 26 (101); Astronomical Society, Leipzig, Oct. 26 (101); Astronomical Observatory of the Roman College, Oct. 29 (96); Royal Academy of Sciences, Lisbon, April 23 (99); Royal Observatory, Greenwich, Oct. 29 (101); Prof. B. Pierce (101); Buffalo Society of Natural Science, Nov. 12 (101); and the Public School Library, St. Louis, Oct. 28 (Catalogue i, ii, iii).

Donations for the Library were received from the Asiatic Society of Japan; the Minister of Mines, Melbourne; the Government of South Australia; Imperial Academy of Russia; Society of Natural History, Moscow ; German Geological Society, Berlin; Zoologische Garten, Frankfurt; Natural History Society in Freiberg im Breisgau; N. L. Magazin, Görlitz; Zoological Society in Amsterdam ; Royal Astronomical Society, Meteorological Office, Meteorological Society, and Nature, in Loudon; Philosophical. Society of Glasgow; Royal Irish Academy; American Journal, and Yale College, New Haven; Franklin Institute, Medical News, American Journal of Pharmacy, and Robinson's Epitomy of Literature, in Philadelphia; National Museum, and Ministerio de Fomento in Mexico ; and Prof. Saenz at Bogota.

Dr. Barker, pursuant to notice, described the location, apparatus, personnel, methods, and results of the Solar Eclipse observations of July 29, last, at Rawlins, and exhibited photographs, and the tazimeter used by Mr. Edison, who was of the party.

Dr. McQuillen described the vivisection and subsequent post mortem dissection of the brain of a pigeon (See minutes, Proc. Vol. XVII, page 314) which lived six months between the operations; and introduced Dr. Carl Seiler, who described the methods of obtaining slices and mounting them and exhibited such slices in a microscope.

A communication was received entitled "On some of the Characters of the Miocene Fauna of Oregon. By E. D). Cope."

The following resolution was offered by Curator Dr. Cres. son, seconded in writing by Curator Dr. Brinton, and put to the meeting and passed.

Resoled, That the Curators of the Society he directed to make arrangements through the Numismatic and Antiguarian Socicty of Phllaclephia, for the deposit of the collection of Coins and Medals, belonging to the Society, in the Penngylvania Museum of Industrinl Art, under ngreement that the sald collection be properly catalogned and displayed and returned on demand.

And the meeting was adjoumed.

On some of the Characters of the Miocene Fiuna of Oregon.

(Read before the American Philusophical Society, November 15, 1878.)

By E. D. Core.

We have been for some time in possession of information as to the ungulate forms which inhabited Oregon during the Miocene period. Through the labors of Profs. Leidy, Marsh and Bettany, we have learned of the existence there of Oreodontide in considerable variety; of Anchitheriades; of peceary like species; of Elotherium, and of Rhinocerus. But of the unguiculate types, of Rodentin, and of the inferior orders of Mammalia, almost nothing is yet known. Having recently received a number of specimens from the deposits in question, I am in a position to offer a number of new identifications. The following species already known from the Miocene of Colorado, I find contained in the collection, viz.: Palaolagus tuadeni; Cunis gregarins; Canis lippincottianus; IHypertragulus calcaratus; Leptomeryx exansi.

Rodentra.

Steneofiber oralatus, sp, nov.

This species is represented in my collection by a cranium which is nearly perfect, the principal deficiency being the absence of the mandibular rami. It is of smaller size than the S. nebrascensis and S. pansus, and differs from both these species in the relative sizes of the superior molar teeth. The first of these is the largest, and the others diminish regularly in size to the last, whose grinding face does not present more than one-third the extent of that of the first. The triturating surfaces of the second and third lave their long axes transverse. In all the crowns, besides the internal and external enamel inflections, there is but one fossette, which is anterior to the external inflection. The latter has become isoluted from the superficial enamel on the last three molars, by attrition. The superior incisors are flat anteriorly with the external angle rounded, and its dentine presents the trausverse undulations seen in S. pansus.

$$
\begin{aligned}
& \text { Measurements. M. } \\
& \text { Length of skull from incisive alveolus. } 0500 \\
& \text { Width between summits of first molars } 0060 \\
& \text { fourth " 0095 } \\
& \text { Diameter of the first molar }\left\{\begin{array}{l}
\text { antero-posterior. } 0040 \\
\text { transverse............. . } 0045
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Diameter of fourth molar }\left\{\begin{array}{l}
\text { antero-posterior. } \\
\text { transverse } 0024
\end{array}\right.
\end{aligned}
$$

From the above measurements it is apparent that the molar series in this species is equal in length to the anterior three molars of the S. nebrascensis
and S. pansus. The posterior fossettes of the erowns seen in those species are wanting in the S gradutus.

Entoptyches cavifrons, gen. et sp. nov.
Char. gen. Probably of the family Suchomyide.* The cranium is elongate, and presents inflated periotic bones, and slender zygoma. The foramen infrarbitale is small and anterior in position, entering the maxillary bone near its suture with the premaxillary.

Generic characters. Molars $\frac{4}{4}-\frac{4}{4}$, rootless, and identical in structure. The crowns are prismatic, and in the joung stage present a deep inflection of enamel from one side, the external in the superior teeth, the internal in the inferior. After a little attrition, the connection with the external enamel layer disappears, and there remains a median transverse fossette, entirely enclosed by enamel. The tooth then eonsists of two dentinal columns in one cylinder of enamel, separated by a transverse enamel-bordered tube. Ineisors not suleate.

The teeth of this genus differ from those of Perognathus in being without distinct roots, and in having the enamel low , cut ofl and enclosed. In Dipodomys, the molars are undivided simple prisms.

Specif. Char. This species is represented by some entire crania, and numerous separated jaws. The pestorbital part of the skull is subquadrate in outline, and depressed in form. The interorbital region is narrowed, lut the superciliary margins (l, not meet nor converge to form a sagital crest. They are thickened, forming two sulparallel ridges which are separated by a shallow concavity of the frontal bone. The nasal bones are very narrow, and their posterior apiees just attain the line of the supero-anterior angle of the orbit. The base of the mahar bone is much elevated and very oblique. The molar teeth are direeted obliquely backwards, the alveolns of the first issuing below the anterior part of the orbit. The first superior molar is the largest, and the proportions of the others diminish regularly posteriorly. The first inferior molar is a little smaller than the second and third, and is about equal to the fourth. Its unterior column is contracted, while the last molar is like the second and third. The face of the inferior ineisor is flat, and its enamel is smooth. The external fice of the jaw is bounded below hy a strong angle, as lat anteriorly as below the tirst molar.
Measurements. M
Length of skull to ineisive alveoli. 041
Width of skull at mastoids. 020

- between orbits 005
- ut middle of mu\%:le. 010
dilevation of skull from second mohar. 111
Length of molnr series. 007
" Ilrst molar. 002
Width of 102
Length of erown of hast molar. 0015

[^0]Mectsurements. M.
Width of crown of last molar 0015
Length from M. 1 to infraorbital foramen 007
Depth of mandibular ramus at M. 2. 006
Width of face of inferior incisor 0016

Entoptychus planifrons, sp. nov.

A larger species than the E. cavifrons, represented in my collection by parts of crania, and rami. The former show that besides the superior size, this species differs from the E. cavifrons in the absence of the superciliary ridges, and hence perfect flatness of the interorbital region. The latter is also wider, measuring five-sixths the width of the muzzle at its middle, while in the E. cavifrons it is only half as wide. The subjoined measurements give the characters in detail.

> Measurements. M.
Width of interorlital space 007
muzzle at middle. 0086
Elevation of skull from second molar. 0130
Length of inferior molar serics. 0072
Depth of ramus at M. 2. 0072
Width of inferior face at M. 2 0043
" " incisor 0018
Distance between infraorbital formen and M. 1 0050
Entoptycius crassiramis, sp. nov.

This, the largest species of the genus, appears to have been less abundant than the two already described. I refer to it portions of two crania and three mandibular rami, found separately. The superior size of the parts is obvious, the posterior three superior molars having the same longitudinal extent as the entire series of the E. cuvifrons. The gradation in the size of these teeth, is as in that species, the grinding surfaces diminishing rapidly in exteut posteriorly. The superciliary ridges are not well prescrved, but were probalbly thickened as in E. cavifrons, and the interorbital space was relatively as narrow, and not so wide as in E.planifrons. The measurements below exhibit the characters more exactly.
Measurements. M.
Width of skull between orbits. 007
Elevation of skull from second molar 015
Length of series of superior molars. $.011 \pi$
Diameter of second molar \{ antero-posterior. 003
transverse 004
Diameter of fourth molar $\left\{\begin{array}{l}\text { antero-pusterior. } \\ \text { transversc. }\end{array}\right.$ $.00^{2}$ 002

In the mandibular rami the inferior masseteric ridge extends to below the anterior border of the first molar, and is very prominent and acute. It results that both the exterior and inferior aspects of the ramus are con-
care to the anterior extremity of the crest, which slopes upwards. The incisive alveolus, though not prominent as in the Hystricomorpha, is on the inner side of the base of the ramus in front, and the enamel-face of the incisor tooth is directed more in wards than downwards. Above the alveolar prominence, the inner face of the ramus is gently concave. The anterior origin of the coronoid process is opposite the posterior border of the second molar.

Measurements. M.
Length of inferior molar series. 0105
Width of anterior face of inferior incisor. 0028
Depth of ramus at M. 2. 005_{5}^{5}
Width of ramus below at M. 2. 0070

Pleurolicus sulcifrons, gen. et sp . nov.

Char. gen. Fam. Saccomydie. Superior molars rooted and short-crowned. The crowns with a lateral fissure bordered with an inflection of the enamel sheath, extencling to their bases. In the superior molars this inflection is on the external side, and does not divide the crown. Superior incisors not grooved.

This genus is curiously near to the existing He teromys and Perognattus, the two genera of Saccomyidx with rooted molars. The former differs in laving the molars divided into two columns, each of which is sheathed in enamel, while Peroynuthus only differs so far as I am aware, in having the superior incisors grooved.

Specif. Char. This species resmbles those of the allied genus Entoptychus in many respects. The superciliars horders are thickened upwards, forming two ridges, which encluse a groove between them which is more pronomed than in the Eintoptychus catifroms. The mazzle is plane above and considerably wider than the interorbital space. The base of the malar is thin and oblique, and the foramen infruorbitale exterius is well in advance of the molar teethand at the anterior patt of the maxilary bone. A groove passes backwards from its inferior border, terminating in a small foramen which marks a point nearly half way to the first molar. Within this, another shallow groove bounds the more prominent median line. The palatal surfaco exhibits two shatlow lateral grooves, which commence opposite the posterior border of the first molar.

The grinding surfaces of the molarsare transverse ovals, only intermpted by the exterior fissure. The first molar is slightly diflerent in form, being larger, and its section, when mot much worn, being nearly roumb. Its anterior portion extends towards the alveolus, giving an antero-posterior oval, on prolonged wear. Each tooth has three roots, ono interior and two exterior ; in the first they may he descrihed as two posterior and one anterior. I'he last molar is the smullest, the series exhibiting a regular gradathon in size.

Mcesurements.
M.

[^1]Width of muz\%le it middle. 0080

$$
\text { Measurements. } \quad \mathrm{M} \text {. }
$$

$$
\text { Depth of cranium at M. 2........... } 0138
$$

Length of molar scries along base. 0080
Diameter of second molar $\left\{\begin{array}{l}\text { antero-posterior............. . . } 0016 \\ \text { transverse................ . } 0020\end{array}\right.$
Width of face of superior incisor. 0020
Meniscomys hippodus, gen. et sp. nov.
Gen. Shar. The characters of this genus are derived from the dentition of both jaws, and from portions of the cranium which are preserved. The molars are rooted, and number ${ }^{4}$. Those of the superior series are without enamel inflections, and the triturating surface exhibits two external and one intermal crescentic sections of the investing enamel. On the second superior molar there are three external erescents in the typical species; and the first molar is simply conic. Between the inner and external crescents, there are the curved edges of enamel plates directed obliquely and transversely. The grinding surfaces of the inferior molars display in the unworn condition, two $\mathrm{L}_{\text {-shaped }}$ transverse crests, connected longitudinally on the median line ; on wearing. the lateral emarginations of the enamel become shaflower, disappearing from the inner side, but remaining on the outcr. Incisor teeth not gronved. Foramen infraurbitule anterius, if present, elevated in position and near orbit.

The characters of the dentition of this genns resemble those of the genus Pteromy.x, which is now confined to Asia and the Malaysian Archipelago. The superior molars differ from those of Pteromys in wanting all reëntrant cnamel inflection. Specimens in my collection indicate two species of Meniscomys.

Sperif. Char. Superior molars with a vertical ridge from the points of junction of the crescents on the external side ; there are thus two on the second molar, and one each on the thitd and fourth. Within ench of the external crescents is another crescentic edge of a pair of vertical cnamel plates, and the inner marginal crescent sends off a short transverse branch towards them. With attrition, all these crests unite by their extremities, enclosing four distinct lakes, which, after still further wear, disappear. Attrition produces a similar result in the inferior molars, viz. : two pairs of crescents enclosing four lakes, which ultimately wear out. The inferior incisor has a shallow concavity on its anterior face.

The maxillary bone, anterior to the molar tecth, is shorter than the premaxillary. The incisive formina are entirely in the latter. The sides and superior aspect of the muzzle are regularly convex in transverse section. The inferior incisive alveolus is enclosed entirely in the plane of the ramus, and extends posteriorly to below the last molar tooth. The masseteric ridge is very oblique, and rises to in median point below the second molar. The coronoid process rises from the front of the last molar.

Measurements.
M.

Length of superior molar series. 008
Moasurements. M.
Diameter of second superior molar $\left\{\begin{array}{l}\text { antero-posterior } \\ \text { transverse. }\end{array}\right.$ 004 0035
" third " " antero-posterior. 0020
\{ transverse. 0025
Width of superior incisor 0020
Length from base of first superior molar to base of in- cisor. 0065
Width between bases of first molars 0020
Length of first inferior molar. 0033
Depth of ramus at second molar. 0050
Width " below " 0035
Meniscomys multiplicatus, sp. nov.This species is considerably larger than the M. hippodus, and differs inthe greater complication of the enamel plates of the inferior molars. Thefour crescentic arens are discernible on the worn surfaces of the crown, ofwhich the posterior inner is reduced in size on the middle two molars.The two enclosed lakes have very plicate borders which form many smallloops, and sometimes they are fused into a single irregular area. The lastmolar is extended a litule posteriorly, and all present an entrant angle be-tween the inner columms. The coronoid process originates opposite thethird molar, and the masseteric ridge ceases below the mitdle of the jawbelow the second molar.
Mertsurements. M.
Probable length of inferior molar series. 0120
Length of posterior three molars. 0095
Diameter of second molar $\left\{\begin{array}{l}\text { antero-posterior. }\end{array}\right.$ 0030
Length of fuurth molar. 0040
Depth of ramus below second molar 0070
Width 0050

Cahnivora.

Temnocyon alitigenis, gen. et sp. nov.
Gen. Chuer. This genus is only known from a mandibular ramus which supports all the teeth excepting the incisors and prombly the last molar. There are four premolars and probably three true molars, all having the general character of those of Canis. The only chameter by which I distinguished the new genus Temnocyon is seen in the firm of the hed of the sectorinl texoth. Instend of presenting a conenve surface bounder by ridges or tubereles, it presents a more or less median cutting edge ns in the posterior premolars of Oryara. In the typical spectes, there is but one row of cuspen on the flisst tubereular moher, bint they are not clevited, and stand on one side of the crown. In comparing this genus with types other timu Connider, one can recognize in its chanacteristie peculiarity of the sectorial
tooth, one well-known in the typical genera of Viverride and Mustelidce. Temnocyon is, however, truly canine in other details, and appears to approach the genus Paloocyon of Lund. According to this author, the posterior inner tuberele of the anterior part of the crown of the sectorial tooth is wanting in that genus, so that it is distinct from the North American form.

Specif. Chur. The mandibular ramus is rather deep and compressed, much more so than in the Canis latrans, with which it agrees in the length of the dental series. As compared with the existing species of Canis and Vulpes of North America, the sectorial tooth is relatively smaller and the premolars larger. In this respeet it agrees with most other dogs of the Lower Miocene, and differs from those of the Upper Miocene (Loup Fork).* The posterior tuberele is wanting from the premolars, excepting the last, where it is large and obtuse, differing in this respect also from most recent dogs, and from the cotemporary Canis gregarius. In the sectorial tooth the prineipal eusp is muel elevated above the anterior, while the inner median is small, with its apex in line with the anterior. The cutting edge of the heel is not acute, and is a little external to the median line; there is a weak cingulum-like angle at its inner base. 'The first tubereular tooth is large, nearly equaling in antero-posterior diameter the base of the third premolar. It is parallelogrammic in transverse seetion, and supports two principal cusps and an anterior ledge. The cusps are pronounced and stand exterior to the middle line; their inner side slopes to the base of the crown where there is no cingulum. The leage is higher on the inner than the extermal side. There are no basal cingula on either side of the lases of any of the teeth. The second tubercular molar is lost.

The alveolar margin of the jaw rises behind the sectorial tooth, and the inferior margin begins to ascend below the middle of the same tooth more decidedly than in C. lupus, latrans or cuspigerus. The two large inental foramina, we sitnated, the one below the seeond, the other below the third premolars.

Measurements. M.
Length of anterior six molars. 073
" " four " 045
". base of second premolar. 011
Elevation of crown " ." 011
Length of base of fourth " 015
Elevation of crown " "..................... . 014
Length of lase of sectorial tooth. 0185
Elevation of principal cusp of sectorial tooth........... . 0160
" anterior " " ".......... . 009
Length of heel of sectorial................................... 007
Elevation " ".................................. . 0085
Length of crown of first tubercular. 0115

[^2]Measurements. M.
Width of crown of first tubercular. 0065
Depth of ramus at P. M. 2 024
" " at sectorial. 028
Thickness 010

Canis cuspigerus, sp. nov.
This peculiar species is indicated by the greater part of the cranium with dentition, in which are united both rami of the lower jaw with nearly all of the teeth in place. These indicate a dog of small size, about equaling the Canis gregurius Cope, but one presenting marked characters.

The third premolar tooth in both jaws differs from the corresponding one in the C. gregarius and in most recent species, in lacking the lobe of the posterior entting edge, agreeing in this (as regards the inferior series) with the Temnocyon altigenis. It is present in the fourth inferior premolar, which has besides, a low heel. The inferior sectorial tooth is characterized by its great robustness ; the internal median tuberele is moln elevated, while the prineipal cusp is short. The heel is wide and hasin-shaped, with the inner border as much elevated as the outer. The first tubercular molar is characterized by its width as compared with its length being nearly as wide transversely as fore and aft. It has two anterior cusps followed by a basin with elevated borders simulating two posterior cusps. There are an anterior and a exterior cingulum. The second tubercular is a miniature of the first, differing in the more robust external posterior cusp, and the absence of exterual basal cingulum. There are no complete cingula on the external bases of the other inferior teeth. The second superior tubereular is well developed, having two external tubercles. The anterior inner casp of the superior sectorial is distinet and noute, and there is a cingulun along the inner buse of the erown. The exserted portion of the canines is long. sleuder, and with an oval section marrowed behini. The enamel of all the molars is more or less ruguse, a chameter which is only found among our extinet dogs in the C. geismurianus.

The mandibular rani are shablow, and their inferior margin is not stont. A gentle clevation of the later commences below the first tuberenlar tooth and the alveolar border rises but litte behind. The masseterie fossul is deep and well detined.

Measurements.

M.
lougtla of inferior unolar series. 0.11
" buses of four premolars (12) 3
" lanse of secoud (0).
Flevation crown 00.5
langth of buse of fourth 007:
Eilevation of crown 00.55
L.angth of buse of nectorinl. $(1) 10$
Eilevation of principul cusp. ())1i
Width of lecel of sectorlal. 01015
Measurements. M.
Diameter of first tubercular $\{$ antero-posterior 006
transverse 005
Antero-posterior diameter second tubereular. $.00: 37$
Length of base of superior sectorial. 009
" bases of two tuberenlars. 012
" base of first tubercular. 0064
Canis geismarianus, sp. hov.

This species of dog may be placed with reference to the size of its inferior sectorial tooth between the C. lippincottianus and C. hartshornianus. In the robust proportions of this tooth it more netrly resembles the C. cuspigerus. The mandibular ramus is robust and shallow, and quite distinct from the deej, jaw of C. Wartshornianus. The sectorial has perhaps twice the bulk of those of the O : lippincottianus and C.cuspigerns. From that of the latter it dillers further in the small inner tuberele and contracted heel.

The sectorial part of the tooth is relatively small, not exeeeding the heel in length, and its cusps are low. The heel is notable for the elevation of the tuberele of the inner side-which exceeds that of the outer; the latter also, is contrated, standing within the extermal base, which is represented by a short cingulum. A weak cingulum below the sectorial blades. Surfice of the enamel rugose where not exposed to frietion.

	Measurements. M.
Diameters of sectorial	(vertical, anterior cusps 006
	heel... 0038
	antero-posterior 011 i
	transverse, middte 006
1) (puth of ramus at sectorial. 012	
Thiekness of "	. 017

The allinities of this speeies are evidently with the C. cuspigerus. It is named in honor of Jucob Geismar, a skillful naturalist of Philadelphia.

Macemerodus stmindens, sp. nov.
This obviously distinct species is only represemted by the crown of a superior canine tooth, from which the apex has been broken. Its eharacters are so peculiar that I record it under the ahove name, cot knowing whether I shall have better specimens.

The tooth is long and very much compressed, much more so than in any species of the genus known to me. Its anterior and posterior edges are finely and very perfeetly dentienlate without lateral flexure near the base. The centre of each side of the tooth is oecupied by a wide open gutter, so that the greatest transverse diameter of the crown is not at its middle. These gutters become planes towards the apex, giving an elongated hexagonal section. The size indicates an animal of the proportions of the M. primoeres, and smaller than the M. bruchyops.

As compared with the superior canine of the Daptophilus squalidens, which the present specimen resembles in its compression and fine denticulation, it differs in its greater relative length and in the presence of the lateral open sulci.

Measurements. M.

Length of a denticle on base. 000143

Macherodus brachyops, sp. nov.

This species, which ranged in size from that of the puma to that of the jaguar, is represented in my collection by parts of two crania; by an entire cranium; by a left mandibular ramus with parts of the skeleton, and by several isolated teeth. The characteristics of the molars in both jaws are those of the other species of this genus. The first superior premolar is two-rooted and small, occupying the middle of the short space between the canine and the second premolar. The latter is large, and has no anterior basal tubercles. Sectorial without anterior basal tuberele. Tubercular tooth small, transverse.

The cranin of the three individuals mentioned agree in many particulars; and especially in the very short face and muzale. This may be more exactly expressed by comparing the interspace separating the second and third premolur from the canine with the length of the base of the latter. From this it is seen that the two dimensions are equal, while in the M. primesrus the first mentioned is much the longer of the two. In the mandible referred to this species another character is seen in the relatively large size of the premolars, which much exceeds that of the corresponding teeth in M. primeous. The tirst is stated by Leidy to have an anterior basal cusp, which is wanting in the M. brachyops.
In the tirst cmaimm the sagitha crest is well developed. The canine tooth has an oval section at the hase of the crown, whose long diameter somewhat exceeds the distunce between it and the anterior base of the second premolar. The infraorbital foramen is large. The second specimen, the left maxilary and part of malar bones with teeth, shows that the length of the buse of the sectorim tooth equals the space between it and the middle of the first premolar. The superior nspect of the proximal portion of the malar bone is horizontal, constituting a surface not seen in the species of Felis. The canine is rohust, with an oval section the these. The posterior denticulate cutting edge extends higher up than the anterior, and venses ut the buse of the enamel. The anterion conting edge is on the inner side of the anterior face of the tooth.

Mfrasuremonts.

$$
\text { No. } 1 .
$$

bength of muzzle in front of cunine. 017
Diameter of cmine at buse $\left\{\begin{array}{l}\text { antero posterior. } 018 \\ \text { transerse. } 11\end{array}\right.$

Measurements.

$$
\text { No. } 2 . \quad \text { M. }
$$

Length of base of series to canine. 062
"، "seend premolar. 018
" " sectorial. 025
Elevation to summit of infraorbital foramen 033

The characters displayed by the second cranium lead me to suspect that it is that of a female. A striking feature of the superior dental series is the small size of the canine, which is also not much compressed at the base. As regards the cranium, the sagittal crest is only distinct over the posterior part of the brain case; the zygomata are not very widely expanded, and the muzzle is narrowed. The external infraorbital foramen is large.

The mental border of the mandibular ramus is not flared downwards but is continuous, but the external is separated from the anterior and inferior faces by strong angles. The diastem:a is long. Three molars, nll large ; the first without anterior basal tuberele, the second with a large one. Sectorial tooth the longest, with well developed simple cutting heel.
Measurements. M.
Total length of cranium $19:$
Greatest width 1~3
Length of dental series with cunine. 07%
Dianeter of canine at hase $\{$ antero-posterior. 012
I transverse. 008
Distance between canine and second premolar 019
Length base sceond premolar. 019
Length base sectorial 023
Length inferior dental series, with canine. 094
diastema. 0.5
Length base of first premolar. 015
" " secturinl. 027
Depth of ramus below seenad premolar. (0)3:
" " superior canine. 027

This sabre-toothed tiger is larger than the Muchurodus primuerus, and is more like the animal indicated by a fragment of the lower jaw named by Leidy, M. occidentalis. But the latter agrees with the M. primovers in the relatively small size of teetle, especially of the first premolar, mud in their oblique position, characters not seen in M. brrechyops.

Perissodactyia.

Ancilitherium equicers, spo nor.

This animal is represented by a portion of the skeleton including a complete cranium of one individual with mandibular rami of severnl others. The characters of the species are well marked, and do not approach very nearly to those of any other known to me.

The skull is considerably larger than that of A. bairdi, and the length PIROC. AMER. PIIILOS. SOC. XVIII. 102. J. PIINTED DEC. 20, 1878.
is greater as compared to the transverse and vertical diameters. The preorbital region is but little concave, and the anterior border of the orbit is above the posterior half of the first true molar. The molar teeth present a tubercle between the anterior lobes, and a weak cingulum extends round the inner base of the anterior one, and in the second premolar, round the base of both inner lobes. Thence it passes round the anterior base of the crown and ceases in a tubercle which rises in contact with the anterior median crest. On the posterior side of the crown the cingulum in like manner terminates in the large three-sided posterior marginal tuberele. The anterior median tubercle-erest is well distinguished from the anterior inner tubercle and is directed very obliquely. The posterior median crest is continuous with the inuer, and is well separated from the external cresis. The external basal cingulam is robust, the columns are prominent, and the outer faces of the external creseents decply impressed but with a well marked median ridge. The external cingulum and its margins is rugose ; other parts of the enamel smouth. The first premolar has two rools; the second premolar is as long as the fourth, and longer than the last true molar.

From A. condoni Leidy, this species differs materially in the composition of the superior molars. In that species there are no inner tuberele nod cingulum ; the anterior median crest is more completely sparated ; the anterior cingulum does not cease with the anterior mardinal tumerele, and the posterine margimal tuberele is linear, not trihedral.

Anchithemum hiachidophem, sp. hov.

Portions of the maxillary bones supporting molar teeth, indicate a species of the size of the A. equiceps, but dillering in varions respects.

The median and inner tubereles are not deeply separated, and the fior. mare ime cut off from the extermal creseents hy a deep fissture. There is no tuberclos between the bases of the inner cones, nor is there any internal cingulan. 'The witerior cingulum does not develop a distinct tuberele, nad dows not extend to the anterior extremity of the anterior onter crescent. The ponterior cingulam develops a large tribedral tuberele, and

robust, and the external columns are prominent; the intervening spaces are impressed, and have a distinet median ridge. Enamel smooth or slightly rugose at base of crown.

> Measurements. M.
> Length of two superior molars. 030
> Diameter of first superior molar $\left\{\begin{array}{l}\text { antero-posterior. } 015 \\ \text { transverse. } 017\end{array}\right.$

These climensions are those of the A. equiceps.
Anciitherium longicristis, sp, nov.
This is a smaller species than the two above described, having the dimensions of the A. butreli. The best specimen representing it consists of a right maxillary bone, which supports all the molars excepting the last. The infraorbital foramen issues alove the thirl premolat: The first premolar is two-rooted ; the seeond is not elongute, and is equal to the other premolars, or the penultimate true molar, in antero posterior dimmeter. There are no interior basal tobereles or cinguln, but the anterior cingulum has a tuberele whieh is appessed elosely to the miterior median. The posterior cingulum expands into a large tribedral posterior margimal tubercle. The anterior median tubercle erest, appears in the worn state to be moderately distinct from the internal ; both it and the posterior middle are characterized by their production outwards ; the latter passing between the exterior crescents mall forming a junction with their common commetion. The external cingula are not strongly marked, nor the external faces of the erescents impressed; the hatter we convex, and with the median ridge little distinet. Enamel smooth.

Mecesurcments. M.
Length of miterior six molars. $06 \mathrm{e}_{2}$
" premolar serics. 044
Diameter of second premolar $\left\{\begin{array}{l}\text { antero-posterior........ . (1) } \\ \text { transverse }\end{array}\right.$
Diameter of second true molar $\{$ antero-posterior. 012.5
In the Ammal Report of the U. S. Geol. Surv. Terrs. for 1873,* I qave the comparative characters of the three species of this genus then known to me, viz.: A. bairdi Leidy ; A. cuneutum Cope, and A. exoletum Cope. I now give a table in which the three species above described are introduced, with the A. condoni Leidy.

A A tuberele between the internal lobes of the superior molars.
Larger; median tubercles well separated ; large anterior and posterior marginal tubereles.
. equiceps.
Smaller; median tubereles not separated ; no anterior murginal and a small posterior marginal tuberele.
A. bairdi.

A.A No tuberele between inner lobes.

[^3]
i. External cingulum robust.

β Anterior median crest little or not distinct.
Larger ; median crests cut off externally ; 10 anterior marginal tubercle ; external faces impressed. A. brachylophum.
Small ; posterior median crest confluent with external crests ; an anterior marginal tubercle ; exterual face little impressed........ A. longicristis.
$\beta_{1} \beta$ Anterior median crest isolated.
Larger; a large anterior marginal tubercle; posterior marginal linear wrinkled.
A. condoni.

Small ; anterior marginal tuberele minute, posterior triangular; median crests short ; smooth.. A. cuneatum.
ii. External cingulum narrow.

External faces without median rib; median crests short, the anterior cut off; marginal tubercles small................................ . A. exoletum.

Stylonus seversus, gen. et sp. nov.
Gen. Char. These are derived from superior molar teeth Stylonus is allied to Hippotherium in details, including the isolation of the anterior internal chamel covered column, which thus forms an island of dentine, and in the prismatic character of the tooth. It differs from it in the fact that the posterior internal colmm is isolated in the same mamer as the anterior, thus forming a second island on the triturating surface of the erown.

This interesting new genus adds one to the already numerous forms of extinet equine animals. It earries to its limit the line of development which retains the imer tubercles of the molar crown distinet from the median. The preceding station on this line which we know is the genns Anchippus, where the median crests have not assumed the antero-posterior direction belonging to the higher equine genem, and where the molars have short crowns and long roots. We may then believe that the line which includes Anchippus, Hippotherium, aud Stylonus, is a side branch from that which terminated in Equus. The line of Equuts must be tracel from Anchitherium through Protohippus and Mippidium.

Specif. Chat. Two superior molar teeth were accompmied ly at mumber of inferior molars as having been all found together; but whether they belong to one individual is uncertain. 'The dentimal lakes of the superior molar are contluent by the median trausverse valley, und increased weat would probably join the posterior pair by their posterion angles. The borders of the cementum lakes are simple, except one or two plientions on their opposed adjacent borders, and one at the posterior inner patt of the pesterior. The intermal columus are small, and their sections form two equal ovals with their long axes antero-posterior. The anterior dentinal lake sends ofl a narrow loops towards the posterior part of the unterior columa. The shaft of the tooth is lucurved, and the external face is mequally divided by the ustal ridge. 'The wide gutters on ench side of the latter are unfformly concave, und contain a mather shathow deposit of (Cmentim.

In the inferior molars the two median interior tubercles are stout, and the loops which they bound, are nearly enclosed. There is a tubercle between the bases of the external columns.

Meusurements. M.

Length of crown of superior molar. 028
Diameter superior molar $\left\{\begin{array}{l}\text { antero-posterior.............. . } 018 \\ \text { transverse. } 016\end{array}\right.$
Long diameter internal column-lake. 005
From the Pliocene formation of Cottonwood, Grant co., Oregon.
Deodon shoshonensis, gen, et sp) hov.
Gen. Char. These are indicated by the terminal portion of the lower jaw of a huge mammal, which does not resemble that of any known genus of this order. It supports on the side, three incisors, one canine, and two premolars, which form an uninterrupted series. The first premolar las two roots; and the canine is of huge proportions. The mandibuhar symphysis is coössified, and thero are no osseous tuberosities on it nor on the adjacent parts of the rami.

The characters of the piece on which this genus is established indicate that the latter probably pertains to the Chalicotheriiden along with Menodus and Symborodon. From these its six inferior incisors distinguish it, while the absence of a diastema separates it from Chalicotherium. From Palceosyops and Limnolyus it may be known by the large two rooted first premolar, or more correctly, in all probability, by the absence of the first premolar of the inferior series. In the relatively powerful canines it resembles the last named rather than the first named genera.

Specif. Char. The canine teeth are very robust, as in the species of Elotherium. The inferior face of the symphysis is not steeply inclined, and is quite elongate. It is narrowed near the bifureation and expands to a rounded incisive border. The first incisor is narrower than the second and third, which are robust. There are two small mental foramina, the larger below the anterior root of the anterior premolar ; the second below the anterior root of the second premolar.

> Meusurements. M.

Length of symphysis above. 155
Width between bases of canines.......................... . . . 100
Antero-posterior diameter of base of canine. 050
Transverse " " secoud incisor..... . 022
Diameter of base of first premolar $\left\{\begin{array}{l}\text { antero-posterior.... . } 040 \\ \text { transverse. } 025\end{array}\right.$
This species is the largest of the North American Perissodactyla, with the possible exception of the Menodus proutii.

Artiodactyla.

Hyopotanus auyotianus, sp. hov.
This species of a genus little known in North America, is represented by
a portion of the left mandibular ramus, in which only the last molar is sufficiently well preserved for identification. The latter is, however, perfect, and furnishes clear evidence of the former existence on the west side of the Rocky Mountains of a species distinet from the H. americanus Leidy, from the more eastern regions. The cones are in pairs and are directly opposed ; their section is sub-trihedral, the two external sides of the extemal cones, forming a regular convexity. The cusps are acutely produced and slightly divergent. The posterior side of each nuter cusp is excavated; the exterior side of the same presents a inedian rib with a coneavity on each side, which is terminated below by an imperfect cingulum. The latter terminates on each side of the base of the eusp in a rudimental cusp, of which there are thus four on the external side of the tooth. The bounclaries of the inner face of the external cusps are angular ; the posterior one joins a corresponding ridge from the inner cusps, but there is no descending ridge on the anterior inner side of the internal cusp, which therefore forms no junction with the opposite part of the external cusp. The fifth cusp is well developed, and sends a crest in wards to the interior base of the interior cusp of the adjacent pair.

> Measurements. M.

Diameter of last inferior molar $\left\{\begin{array}{l}\text { antero-posterior....... . } 030 \\ \text { transverse.......... . . } 010\end{array}\right.$
This species is smaller than the II. americanus, and diflers much in tetails. It is dedicated to Prof. Arnold Guyot, of Princeton, New Jersey.

> Descriplice list of medalsatruck to commemorate the Butlde of Wreterloo. By Henry Phillips, Jr., A.M.

(Read before the American. Philasophical Saciety, Der. 6, 18is.)

1. Meelal hy l'istrucei (never struck but reproduced by galvanism). Obrerse. The Dioscuri in heaven. Zeus in a quadriga smites the Titans with at thunderbolt. Reverse. In profile are the heads of the emperors of Austria and Russia. and of the Kings of Prussia and Great Britain, surrounded by allegorical emblems representing peace.
2. Obr. Laureated profile lacing right with inscription Naboleon emperevis.
Ren. Vietory hohding a palm branch and hovering in the air over a mass of broken arms and trees. In the exergue, Batambat bu mont St. Jean xvilt juin mbecexv.
3. Obo. Lamrented proble facing right Nabolizon Bonabaibete.

Reo. An magle vanquished by vultures; Watiarioo. In the exergue, is JUis 181%.
 HICS PHNC: HEMEDTTAR.
Ren. Vietory between two tropliles of arms und the Fromeln thag. Vis

[^0]:

[^1]: Interorbital width.
 .0050

[^2]: * See Proceedings Aeademy Philadelphia, 1875, p. 22, where I have diseursed the orlgin and history of tife sectorlal tooth.

[^3]: * Page 496.

